Non-perturbative improvement of the axial current with three dynamical flavors and the Iwasaki gauge action

Takashi Kaneko, ${ }^{a b}$ Sinya Aoki, ${ }^{c d}$ Michele Della Morte, ${ }^{e}$ Shoji Hashimoto, ${ }^{a b}$ Roland Hoffmann ${ }^{f}$ and Rainer Sommer ${ }^{g}$ (CP-PACS/JLQCD and ALPHA Collaborations)
${ }^{a}$ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
${ }^{b}$ Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan
${ }^{c}$ Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
${ }^{d}$ Riken BNL Reserach Center, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
${ }^{e}$ CERN, Physics Department, TH Unit, CH-1211 Geneva 23, Switzerland
${ }^{f}$ Department of Physics, University of Colorado, Boulder, CO 80309, U.S.A.
${ }^{g}$ DESY, Platanenallee 6, 15738 Zeuthen, Germany E-mail: takashi.kaneko@kek.jp, saoki@het.ph.tsukuba.ac.jp, dellamor@mail.cern.ch, shoji.hashimoto@kek.jp, hoffmann@pizero.colorado.edu, rainer.sommer@desy.de

Abstract: We perform a non-perturbative determination of the improvement coefficient c_{A} to remove $O(a)$ discretization errors in the axial vector current in three-flavor lattice QCD with the Iwasaki gauge action and the standard $\mathrm{O}(a)$-improved Wilson quark action. An improvement condition with a good sensitivity to c_{A} is imposed at constant physics. Combining our results with the perturbative expansion, c_{A} is now known rather precisely for $a^{-1} \gtrsim 1.6 \mathrm{GeV}$.

Keywords: Lattice QCD, Lattice Gauge Field Theories.

Contents

1. Introduction 11
2. Improvement condition 2
3. Simulation details \quad 目
4. Numerical results 5
4.1 Wave function projection 周
4.2 The improvement coefficient 6
4.3 Interpolation of c_{A} 7
4.4 Systematic uncertainties 8
5. Conclusions 9

1. Introduction

Various discretizations of QCD on a lattice are presently used in the large scale efforts aiming at non-perturbative results in the theory of strong interactions (see [1]-10] and references therein). Wilson's original formulation 11 is theoretically very well founded 12, 13] and rather simple to implement in numerical simulations. The flavor symmetries are exact and with modern algorithms [14-18] the regime of small quark masses and small lattice spacings can be reached (11, 19]. On the other hand it is well known that since the chiral symmetries are broken by the Wilson term, lattice artifacts linear in the lattice spacing are present. It has long been understood how these can be removed by applying Symanzik's improvement programme [20-24]. One has to add dimension five fields to the lattice Lagrangian and (for example) dimension four fields to the quark bilinears. In particular the bare flavor axial current

$$
\begin{equation*}
A_{\mu}^{a}(x)=\bar{\psi}(x) T^{a} \gamma_{\mu} \gamma_{5} \psi(x) \tag{1.1}
\end{equation*}
$$

(the $\mathrm{SU}\left(N_{\mathrm{f}}\right)$ generator T^{a} acts in flavor space) is improved by

$$
\begin{equation*}
\left(A_{\mathrm{I}}\right)_{\mu}^{a}(x)=A_{\mu}^{a}(x)+a c_{\mathrm{A}} \frac{1}{2}\left(\partial_{\mu}+\partial_{\mu}^{*}\right) P^{a}(x), \quad P^{a}(x)=\bar{\psi}(x) T^{a} \gamma_{5} \psi(x), \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\partial_{\mu} f(x)=\frac{1}{a}[f(x+a \hat{\mu})-f(x)], \quad \partial_{\mu}^{*} f(x)=\frac{1}{a}[f(x)-f(x-a \hat{\mu})] . \tag{1.3}
\end{equation*}
$$

The coefficients of these correction terms, such as c_{A}, can be determined non-perturbatively by requiring specific continuum chiral Ward-Takahashi identities to be valid at finite lattice
spacing [25]. One is then sure that the $\mathrm{O}(a)$ effects are entirely removed. Details of this programme as well as the present status have recently been reviewed [26]. Here we just mention that the coefficient c_{sw} of the Sheikholeslami-Wohlert term [21], the only dimension five correction to the action, ${ }^{1}$ has been determined non-perturbatively for different gauge actions and numbers of flavors [25, 27-29].

Next to c_{sw}, the axial current improvement coefficient c_{A} is of particular relevance - for example in the determination of weak leptonic decay constants such as F_{π} or the quark masses. Non-perturbative determinations of c_{A} have been studied for $N_{\mathrm{f}}=0$ and 2 in refs. [25, 30-33]. It turned out that they need special care since the spread between c_{A}-values computed from different improvement conditions is significant around $a \approx 0.1 \mathrm{fm}$. There is nothing fundamentally wrong with this fact. However, as explained in some detail in refs. [26, 28, 33, 34], in such a situation it is important to impose improvement conditions on a line of constant physics. This means that as the lattice spacing a is varied, all other physical scales are kept fixed. The remaining effects (after improvement) are then smooth $\mathrm{O}\left(a^{2}\right)$ terms.

Here we apply this strategy to the theory with $N_{\mathrm{f}}=3$ flavors and the Iwasaki gauge action [35], which is of immediate interest to the large scale computations of the CPPACS/JLQCD Collaborations [3]. All known practical methods for a computation of c_{A} start from the fact that in the continuum limit the (PCAC) quark mass

$$
\begin{equation*}
m=\frac{\left\langle\phi^{\prime}\right| \frac{1}{2}\left(\partial_{\mu}+\partial_{\mu}^{*}\right)\left(A_{I}\right)_{0}^{a}|\phi\rangle}{2\left\langle\phi^{\prime}\right| P^{a}|\phi\rangle} \tag{1.4}
\end{equation*}
$$

does not depend on the choice of the external states $|\phi\rangle,\left|\phi^{\prime}\right\rangle$. This is just a rephrasing of the PCAC (operator) identity. On the lattice an $\mathrm{O}(a)$ dependence will exist in general. It is reduced to $\mathrm{O}\left(a^{2}\right)$ by improvement. Requiring m to be the same for two different choices of $|\phi\rangle,\left|\phi^{\prime}\right\rangle$, or as we will say later "two different kinematical conditions", allows a determination of c_{A} when c_{sw} is already known.

As in ref. [33], we use the Schrödinger functional defined in a Euclidean $L^{3} \times T$ world to construct suitable states with a large sensitivity to c_{A}. In the following section we define the exact choices of kinematical conditions. The reader who is familiar with ref. [33] may skip this section and proceed directly to the description of the simulation details, section 3 , and the results, section $\#$. We finish with some conclusions.

2. Improvement condition

We introduce the following Schrödinger functional [36, 37] correlation functions [32, 33]

$$
\begin{align*}
f_{\mathrm{A}}^{(n)}\left(x_{0}\right) & =-\frac{a^{3}}{3} \sum_{\mathbf{x}}\left\langle A_{0}^{a}(x) \mathcal{O}^{a,(n)}\right\rangle, \quad f_{\mathrm{P}}^{(n)}\left(x_{0}\right)=-\frac{a^{3}}{3} \sum_{\mathbf{x}}\left\langle P^{a}(x) \mathcal{O}^{a,(n)}\right\rangle \quad \text { and } \tag{2.1}\\
f_{1}^{(n, m)} & =-\frac{1}{3}\left\langle\mathcal{O}^{\prime a,(n)} \mathcal{O}^{a,(m)}\right\rangle, \tag{2.2}
\end{align*}
$$

[^0]with
\[

$$
\begin{equation*}
\mathcal{O}^{a,(n)}=\frac{a^{6}}{L^{3}} \sum_{\mathbf{y}, \mathbf{z}} \omega^{(n)}(\mathbf{y}-\mathbf{z}) \bar{\zeta}(\mathbf{y}) T^{a} \gamma_{5} \zeta(\mathbf{z}) \tag{2.3}
\end{equation*}
$$

\]

where ζ and $\bar{\zeta}$ are the fermionic boundary fields on the $x_{0}=0$ timeslice $\left(\mathcal{O}^{\prime}\right.$ is defined in the same way in terms of the boundary fields at $\left.x_{0}=T\right)$. The correlators depend on the smooth functions $\omega^{(n)}$. Here, as in ref. [33], we use three wave functions

$$
\begin{align*}
\omega^{(n)} & =\frac{1}{N^{(n)}} \sum_{\mathbf{k} \in \mathbf{Z}^{3}} \bar{\omega}^{(n)}(|\mathbf{r}-\mathbf{k} L|) \quad(n=1,2,3) \tag{2.4}\\
\bar{\omega}^{(1)}(\mathbf{r}) & \propto e^{-|\mathbf{r}| / a_{0}}, \quad \bar{\omega}^{(2)}(\mathbf{r}) \propto\left(|\mathbf{r}| / r_{0}\right) e^{-|\mathbf{r}| / a_{0}}, \quad \bar{\omega}^{(3)}(\mathbf{r}) \propto e^{-|\mathbf{r}| /\left(2 a_{0}\right)}, \tag{2.5}
\end{align*}
$$

with $a_{0}=L / 6$. The normalization factors $N^{(n)}$ are fixed by $a^{3} \sum_{\mathbf{x}}\left(\omega^{(n)}\right)^{2}=1$.
By suitably combining the operators $\mathcal{O}^{a,(n)}$, the resulting correlation functions get contributions from different states in the pseudoscalar channel. In fact we construct the boundary operators \mathcal{O}_{0} and \mathcal{O}_{1}, which mainly couple to the ground and first excited states respectively, by using the eigenvectors of the 3×3 symmetric matrix $f_{1}^{(n, m)}$

$$
\begin{equation*}
\mathcal{O}_{0}^{a}=\sum_{n} \eta_{0}^{(n)} \mathcal{O}^{a,(n)}, \quad \mathcal{O}_{1}^{a}=\sum_{n} \eta_{1}^{(n)} \mathcal{O}^{a,(n)} \tag{2.6}
\end{equation*}
$$

where $\eta_{0}\left(\eta_{1}\right)$ represents the eigenvector associated with the largest (2nd largest) eigenvalue. The corresponding correlators $f_{\mathrm{X}, i}=\sum_{n} \eta_{i}^{(n)} f_{\mathrm{X}}^{(n)}$ with $i=0,1$ and $\mathrm{X}=\mathrm{A}, \mathrm{P}$ are eventually used to define the improvement condition, which reads

$$
\begin{equation*}
m_{0}\left(x_{0}\right)=m_{1}\left(x_{0}\right) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
m_{i}\left(x_{0}\right) & =r_{i}\left(x_{0}\right)+c_{\mathrm{A}} a s_{i}\left(x_{0}\right) \tag{2.8}\\
r_{i}\left(x_{0}\right) & =\frac{\left(\partial_{0}+\partial_{0}^{*}\right) f_{\mathrm{A}, i}\left(x_{0}\right)}{4 f_{\mathrm{P}, i}\left(x_{0}\right)} \quad \text { and } \quad s_{i}\left(x_{0}\right)=\frac{\partial_{0} \partial_{0}^{*} f_{\mathrm{P}, i}\left(x_{0}\right)}{2 f_{\mathrm{P}, i}\left(x_{0}\right)} \tag{2.9}
\end{align*}
$$

Solving eq. (2.7) for c_{A} yields

$$
\begin{equation*}
c_{\mathrm{A}}\left(x_{0}\right)=-\frac{1}{a} \frac{\Delta r\left(x_{0}\right)}{\Delta s\left(x_{0}\right)}, \quad \Delta r\left(x_{0}\right)=r_{1}\left(x_{0}\right)-r_{0}\left(x_{0}\right), \quad \Delta s\left(x_{0}\right)=s_{1}\left(x_{0}\right)-s_{0}\left(x_{0}\right) \tag{2.10}
\end{equation*}
$$

The sensitivity of the improvement condition to c_{A} is given by $a\left|\Delta s\left(x_{0}\right)\right|$. In the ideal case of exact projection on the ground (π) and first excited $\left(\pi^{1}\right)$ states (and large $T-x_{0}$) that would be given by $a\left(m_{\pi^{1}}^{2}-m_{\pi}^{2}\right)$. As discussed in ref. 33] however the vectors $\eta_{i}^{(n)}$ do not achieve perfect projection and the correlator $f_{\mathrm{A}, 1}\left(x_{0}\right)$ for example gets some contribution from the ground state. Anyway what is really needed is that at intermediate times $x_{0} \simeq$ $T / 2$ where we extract c_{A}, the correlation functions are dominated by states with different energies, such that the sensitivity is high. We will see in section that in our setup this is indeed the case.

3. Simulation details

We work in the theory with three (dynamical) degenerate flavors of non-perturbatively improved Wilson-fermions and the Iwasaki gauge action 21, 29, (35]. The latter reads

$$
\begin{equation*}
S_{g}=\beta\left\{\sum_{x, \mu<\nu} w_{\mu \nu}^{P}\left(x_{0}\right) \frac{1}{3} \operatorname{Re} \operatorname{Tr}\left[1-P_{\mu \nu}(x)\right]+\sum_{x, \mu, \nu} w_{\mu \nu}^{R}\left(x_{0}\right) \frac{1}{3} \operatorname{Re} \operatorname{Tr}\left[1-R_{\mu \nu}(x)\right]\right\}, \tag{3.1}
\end{equation*}
$$

where $\beta=6 / g_{0}^{2}$, and $P_{\mu \nu}$ and $R_{\mu \nu}$ are the 1×1 and 1×2 Wilson loops in the (μ, ν) plane. Their weights are $w_{\mu \nu}^{P}=3.648$ and $w_{\mu \nu}^{R}=-0.331$ on periodic lattices.

The Schrödinger functional formalism is implemented on a $L^{3} \times T$ lattice with $L=T$. The background field is set to zero and the fields are chosen to be periodic in space. The weights in the gauge action are modified to the following choice [38]

$$
\begin{align*}
& w_{\mu \nu}^{P}\left(x_{0}\right)= \begin{cases}1 / 2 & \text { at } x_{0}=0 \text { or } T, \text { and } \mu, \nu \neq 4 \\
3.648 & \text { otherwise }\end{cases} \tag{3.2}\\
& w_{\mu \nu}^{R}\left(x_{0}\right)= \begin{cases}0 & \text { at } x_{0}=0 \text { or } T, \text { and } \mu, \nu \neq 4 \\
-0.331 \times(3 / 2) & \text { at } x_{0}=0 \text { or } T, \text { and } \mu=4 \\
-0.331 & \text { otherwise }\end{cases} \tag{3.3}
\end{align*}
$$

which entails tree level $\mathrm{O}(a)$ improvement "at the boundaries" 22]. The coefficients of the $\mathrm{O}(a)$ boundary counterterms for the fermions are also set to their tree level value 22]. Note that this is not at all essential. Irrespective of whether the boundary improvement terms are implemented, eq. (2.7) is a correct improvement condition [22].

We simulate at three points in the $(\beta, L / a, \kappa)$ space on a line of constant physics defined by keeping the volume and the quark mass fixed. Scales are fixed through r_{0} (39] and we will use $r_{0}=0.5 \mathrm{fm}$ to quote physical units. For our action, the ratio r_{0} / a has been computed in the region $1.83 \leq \beta \leq 2.05[3])^{2}$ With a slight interpolation of the data of ref. [3] we fixed $L / r_{0} \approx 3$, somewhat larger than the physical size used in ref. [33]. The resulting pairs $(\beta, L / a)$, together with some algorithmic details are collected in table in.

The hopping parameter κ is tuned in order to give a bare quark mass $m_{\text {ref }}$ of about 15 MeV . At $\beta=1.83$ and 1.95 , two quark masses around 10 and 20 MeV are simulated so that we can interpolate c_{A} to $m_{\text {ref }}$. Notice that we are ignoring presumably small changes of the renormalization factors in our range of β and we just keep the bare quark mass fixed. Also, the 1 -loop value of c_{A} [38, 40] is used at this point in the definition of the quark mass.

The algorithm has been described in ref. 15). It is a combination of HMC 41] and PHMC [42, 43]. Non-Hermitian Chebyshev polynomials $P[D]$ are used to approximate the inverse square root of the Dirac operator D required for the third flavor, whereas the other two flavors are treated using the usual HMC pseudo-fermion action. The number of molecular dynamics steps is chosen such that the acceptance rate $P_{\text {PHMC }}$ is about 90%. In order to make this algorithm exact, the correction factor

$$
\begin{equation*}
P_{\text {corr }}=\operatorname{det}[W[D]], \quad W[D]=P[D] D \tag{3.4}
\end{equation*}
$$

[^1]| β | L / a | κ | $N_{\text {MD }}$ | $N_{\text {poly }}$ | $N_{\text {traj }}$ | $P_{\text {PHMC }}$ | $P_{\text {NMT }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.83 | 12 | 0.13852 | 90 | 200 | 3800 | 0.90 | 0.97 |
| 1.83 | 12 | 0.13867 | 90 | 220 | 3800 | 0.89 | 0.95 |
| 1.95 | 16 | 0.13685 | 125 | 230 | 3000 | 0.91 | 0.96 |
| 1.95 | 16 | 0.13697 | 140 | 260 | 3000 | 0.94 | 0.94 |
| 2.05 | 20 | 0.13604 | 130 | 350 | 3000 | 0.87 | 0.97 |

Table 1: Simulation parameters. We denote the number of the Molecular Dynamics steps by $N_{\text {MD }}$, the order of the polynomial approximation by $N_{\text {poly }}$ and the number of unit length trajectories by $N_{\text {traj }}$. The acceptance rates for the PHMC updating and for the noisy Metropolis test in the PHMC algorithm are denoted by P_{PHMC} and P_{NMT} respectively.

β	κ	η_{0}	η_{1}
1.83	0.13867	$(0.5459,0.5920,0.5929)$	$(0.8323,-0.3019,-0.4649)$
1.95	0.13697	$(0.5415,0.5942,0.5948)$	$(0.8367,-0.312,-0.4500)$
2.05	0.13604	$(0.5360,0.5962,0.5976)$	$(0.8371,-0.2836,-0.4679)$

Table 2: Example of eigenvectors η_{0} and η_{1} in three-flavor QCD at each β.
is taken into account by a noisy Metropolis test [44]. The order of the polynomial approximation is chosen such that the acceptance rate of the noisy Metropolis test is around 95%. Throughout all the computation the symmetrically even-odd preconditioned version of the Dirac operator (15, 45] is used.

The correlators in eqs. (2.1), (2.2) are measured each 5th trajectory and residual autocorrelations are estimated by binning the jack-knife samples. For $c_{\mathrm{A}}\left(x_{0}\right)$ the errors flatten out for bin-sizes larger than four, which is what we finally use in our analysis.

4. Numerical results

4.1 Wave function projection

As discussed above, the analysis starts with the determination of the eigenvectors of the correlator matrix $f_{1}^{(n, m)}(n, m=1,2,3)$. The results at the lightest quark mass for each β value are given in table 2. The errors on the components of the eigenvectors are less than 10^{-3} and 10^{-2} for η_{0} and η_{1}, respectively.

The entries of the (normalized) eigenvectors are ratios of correlation functions for which the Z-factors of the boundary fields cancel. They will thus have a well defined continuum limit along a line of constant physics as long as the wave functions $\omega^{(n)}$ are defined only through physical length scales. Indeed, we observe only a small lattice spacing dependence and also note that the values we obtain are close to those in ref. [33], where slightly smaller values of $a_{0}(\sim 0.2 \mathrm{fm})$ and L are used in two-flavor QCD with the plaquette gauge action.

Using the measured eigenvectors, we now construct the pseudoscalar correlators $f_{\mathrm{X}, 0}$ and $f_{\mathrm{X}, 1}(\mathrm{X}=\mathrm{P}, \mathrm{A})$. Figure 1 shows the effective masses in units of the box size for the projected correlators $f_{\mathrm{P}, i}$ at $\beta=1.83$ and 1.95. Clearly, the correlators are dominated

Figure 1: Effective mass $m_{\mathrm{P}, \mathrm{eff}}=\frac{1}{2 a} \log \left(f_{\mathrm{P}, i}\left(x_{0}-a\right) / f_{\mathrm{P}, i}\left(x_{0}+a\right)\right)$ for $f_{\mathrm{P}, 0}$ and $f_{\mathrm{P}, 1}$ rescaled by L. The dotted line shows where the effective mass is equal to a^{-1}.

β	κ	$a \Delta r$	$a^{2} \Delta s$	$L^{2} \Delta s$
1.83	0.13867	$0.0229(14)$	$0.429(22)$	$62(3)$
1.95	0.13697	$0.0072(7)$	$0.236(14)$	$60(4)$
2.05	0.13604	$0.0036(3)$	$0.133(6)$	$53(2)$

Table 3: Examples of Δr and Δs at $x_{0}=T / 2$.
by different states and the effective masses are well separated even for large times. The data at the two coarser lattice spacings are obtained at physical quark masses similar to each other and we observe good agreement also for the effective masses in the pseudoscalar channel $\left(m_{\mathrm{P}, 0} L \approx 3\right.$ and $\left.m_{\mathrm{P}, 1} L \approx 11\right)$. In table 3 we have included also the combination $L^{2} \Delta s$, which has a continuum limit when all quantities are computed on a line of constant physics. While an a-dependence appears to be present in this combination, this is small. We can take its smallness as good evidence that our improvement condition does not suffer from large $\mathrm{O}\left(a^{2}\right)$ contributions.

Note, however, that the effective mass $m_{\mathrm{P}, 1}$ at our smallest β is already close to the cutoff (i.e. $m_{\mathrm{P}, 1} L \sim L / a$ in figure 11). This implies that a rapid increase of the residual $\mathrm{O}\left(a^{2}\right)$ effects might occur if one were to evaluate the improvement condition at even coarser lattice spacings.

4.2 The improvement coefficient

With the projected correlation functions we can proceed to the extraction of c_{A} itself. Table 3 lists the differences Δr and Δs for the lightest quark mass at each β. In all cases we see a good signal for Δs and thus have a large sensitivity to c_{A}.

In figure 2, we plot the effective $c_{\mathrm{A}}\left(x_{0}\right)$, cf. eq. (2.10), from the finest and coarsest lattices. The value of $c_{\mathrm{A}}\left(x_{0}\right)$ stabilizes after only a few lattice spacings from the lower temporal boundary where higher exited states contribute. In all cases $x_{0}=T / 2$ is already in the region, where these effects are small and we use this choice to complete the definition of

Figure 2: Effective value of c_{A} as a function of x_{0} at $\beta=1.83$ (left panel) and $\beta=2.05$ (right panel). The data at $\beta=1.83$ and $\kappa=0.13867$ are slightly shifted along the vertical axis for clarity.

β	κ	$a m$	c_{A}
2.05	0.13604	$0.00554(14)$	$-0.0272(18)$
1.95	0.13685	$0.01020(29)$	$-0.0348(25)$
	[interp.]	$a m_{\text {ref }}$	$-0.0319(18)$
	0.13697	$0.00508(28)$	$-0.0303(24)$
1.83	0.13852	$0.01406(54)$	$-0.0519(23)$
	[interp.]	$a m_{\text {ref }}$	$-0.0528(17)$
	0.13867	$0.00614(63)$	$-0.0534(24)$

Table 4: Numerical results for $a m$ and c_{A}. Also shown are the results of the interpolation to $m_{\text {ref }}$ at the two coarser lattice spacings.
c_{A}. Results for the improvement coefficient and the PCAC quark mass from all simulations are collected in table 4.

4.3 Interpolation of c_{A}

As discussed above, we aim at evaluating the improvement condition on a line of constant physics in order to avoid potentially large $\mathrm{O}(a)$ ambiguities in c_{A} itself. To this end we interpolate the results for c_{A} at $\beta=1.83$ and 1.95 to a quark mass $m_{\text {ref }}$ that is matched to the one measured on the finest lattice. The quark mass dependence seems to be very small and thus the uncertainties in the quark masses become unimportant and we obtain c_{A} at $m_{\text {ref }}$ with a small statistical error.

For future use we summarize the present results for the improvement coefficient in an interpolating formula (4.1), which by construction reduces to the one-loop result from refs. 38, 40] in the perturbative limit

$$
\begin{equation*}
c_{\mathrm{A}}\left(g_{0}^{2}\right)=-0.0038 g_{0}^{2} \times \frac{1-0.195 g_{0}^{2}}{1-0.279 g_{0}^{2}} \tag{4.1}
\end{equation*}
$$

Figure 3: Non-perturbative estimate of c_{A} as a function of g_{0}^{2}.

It is plotted in figure 3, where one can verify that this formula reproduces the data well and gives a smooth interpolation in the range of β values we simulated. As was the case with the plaquette gauge action and two quark flavors [33], the non-perturbative result is quite different from the one-loop estimate for practically relevant lattice spacings.

4.4 Systematic uncertainties

The computation of c_{A} on a line of constant physics reduces the intrinsic ambiguity on the improvement coefficient to a smooth $\mathrm{O}(a)$ form. Deviations from this condition will lead to systematic effects and we should therefore check the consequences of variations of the physical volume and quark mass for our improvement condition.

All simulations, on which we report here, are performed at fixed physical volume and we thus have no direct check of the volume effects on c_{A} from this improvement condition. From [33] we know that those can be large, but we know that our condition guarantees that they disappear smoothly as we approach the continuum limit, especially since our volume scaling is based on actual measurements of r_{0} / a.

From the data at the two coarser lattice spacings in table 4 it is evident that the quark mass dependence of c_{A} is very weak in our setup. This implies that no fine tuning of m is required and also a posteriori justifies the fact that we ignore small changes of the renormalization factor in our range of β and use the bare quark mass in our definition of a line of constant physics.

As mentioned above, the energy of the first excited state at our lowest $\beta=1.83$ is close to a^{-1}. Consequently, enforcing the present improvement condition at $\beta \lesssim 1.83$ may induce large $O\left(a^{2}\right)$ scaling violations in the axial current. While larger volumes might help in lowering this energy, the observation shows that even with improved gauge actions, one should not push the simulations too much towards coarse lattice spacings. On the other hand it is useful to repeat our earlier observation: within the range of lattice spacings covered here, we see a reasonable scaling of $L^{2} \Delta s$; this is a good hint that the considered
matrix elements do not suffer from large a-effects. In retrospect the same statement can be made about the $N_{\mathrm{f}}=2$ computation with plaquette gauge action (33].

5. Conclusions

We have computed the $\mathrm{O}(a)$-improvement coefficient $c_{\mathrm{A}}\left(g_{0}\right)$ of the axial current nonperturbatively in three-flavor QCD with the Iwasaki gauge action and non-perturbative $c_{\mathrm{sw}}\left(g_{0}\right)$ [29. The improvement coefficient c_{A} is parametrized as a function of g_{0}. Since the results connect smoothly to the one-loop formula at weak coupling, a simple interpolation formula (4.1) could be given in the range of $a^{-1}>1.6 \mathrm{GeV}$.

We note that at the largest lattice spacing covered, the correction term amounts to $10-15 \%$ in decay constants F_{π}, F_{K} and then also in the renormalized quark masses evaluated from the PCAC relation. As a next step, a full non-perturbative evaluation of these quantities now requires the computation of the renormalization factor Z_{A} and for interesting applications of vector form factors also the corresponding quantities Z_{V} and c_{V} are very relevant. On the other hand, improvement terms proportional to the light quark masses are suppressed by the smallness of $a m$. It then appears sufficient to approximate the associated coefficient by one-loop perturbation theory [38, 40].

Acknowledgments

We thank Stephan Dürr for useful discussions. Numerical simulations are performed on Hitachi SR8000 at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale Simulation Program (No. 05-132). This work is supported by the Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 13135204, 15540251, 17740171, 18034011, 18340075) and the JSPS Core-toCore Program. TK is grateful to the Theory Group in DESY Zeuthen for kind hospitality during his stay.

References

[1] L. Giusti, Light dynamical fermions on the lattice: toward the chiral regime of $Q C D$, PoS(LAT2006)009 hep-lat/0702014.
[2] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices. I: first experiences and physics results, JHEP 02 (2007) 056 hep-lat/0610059.
[3] CP-PACS/JLQCD collaborations, T. Ishikawa et al., $2+1$ flavor light hadron spectrum and quark masses with the $O(a)$ improved Wilson-Clover quark formalism, PoS(LAT2006)181 hep-lat/0610050.
[4] PACS-CS collaboration, Y. Kuramashi et al., $2+1$ flavor lattice $Q C D$ with Lüscher's domain-decomposed HMC algorithm, PoS(LAT2006)029 hep-lat/0610063.
[5] S.R. Sharpe, Rooted staggered fermions: good, bad or ugly?, PoS(LAT2006)022 hep-lat/0610094.
[6] MILC collaboration, C. Bernard et al., Update on the physics of light pseudoscalar mesons, PoS(LAT2006)163 hep-lat/0609053.
[7] RBC and UKQCD collaboration, C. Allton et al., $2+1$ flavor domain wall $Q C D$ on a $(2 \mathrm{fm})^{3}$ lattice: light meson spectroscopy with $L_{s}=16$, hep-lat/0701013.
[8] ETM collaboration, K. Jansen and C. Urbach, First results with two light flavours of quarks with maximally twisted mass, PoS(LAT2006)203 hep-lat/0610015.
[9] ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, hep-lat/0701012.
[10] JLQCD collaboration, H. Fukaya et al., Two-flavor lattice QCD simulation in the epsilon-regime with exact chiral symmetry, hep-lat/0702003.
[11] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445.
[12] T. Reisz, Lattice gauge theory: renormalization to all orders in the loop expansion, Nucl. Phys. B 318 (1989) 417.
[13] M. Lüscher, Construction of a selfadjoint, strictly positive transfer matrix for euclidean lattice gauge theories, Commun. Math. Phys. 54 (1977) 283.
[14] M. Hasenbusch, Speeding up the Hybrid-Monte-Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 hep-lat/0107019.
[15] JLQCD collaboration, S. Aoki et al., Polynomial Hybrid Monte Carlo algorithm for lattice QCD with odd number of flavors, Phys. Rev. D 65 (2002) 094507 hep-lat/0112051.
[16] M. Lüscher, Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD, Comput. Phys. Commun. 165 (2005) 199 hep-lat/0409106.
[17] C. Urbach, K. Jansen, A. Shindler and U. Wenger, HMC algorithm with multiple time scale integration and mass preconditioning, Comput. Phys. Commun. 174 (2006) 87 hep-lat/0506011.
[18] M.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the rational Hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 hep-lat/0608015.
[19] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, Stability of lattice QCD simulations and the thermodynamic limit, JHEP 02 (2006) 011 hep-lat/0512021.
[20] K. Symanzik, Continuum limit and improved action in lattice theories. 1. principles and Φ^{4} theory, Nucl. Phys. B 226 (1983) 187; Continuum limit and improved action in lattice theories. 2. $O(n)$ nonlinear σ-model in perturbation theory, Nucl. Phys. B 226 (1983) 205.
[21] B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for $Q C D$ with Wilson fermions, Nucl. Phys. B 259 (1985) 572.
[22] M. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and $O($ a $)$ improvement in lattice $Q C D$, Nucl. Phys. B 478 (1996) 365 hep-lat/9605038.
[23] M. Lüscher, Advanced lattice $Q C D$, hep-lat/9802029.
[24] T. Bhattacharya, R. Gupta, W. Lee, S.R. Sharpe and J.M.S. Wu, Improved bilinears in lattice QCD with non-degenerate quarks, Phys. Rev. D 73 (2006) 034504 hep-lat/0511014.
[25] M. Lüscher, S. Sint, R. Sommer, P. Weisz and U. Wolff, Non-perturbative $O($ a $)$ improvement of lattice QCD, Nucl. Phys. B 491 (1997) 323 hep-lat/9609035.
[26] R. Sommer, Non-perturbative QCD: renormalization, $O($ a)-improvement and matching to heavy quark effective theory, hep-lat/0611020.
[27] ALPHA collaboration, K. Jansen and R. Sommer, $O(\alpha)$ improvement of lattice $Q C D$ with two flavors of Wilson quarks, Nucl. Phys. B 530 (1998) 185 [Erratum ibid. B 643 (2002) 517] hep-lat/9803017.
[28] CP-PACS And JLQCD collaboration, N. Yamada et al., Non-perturbative $O(a)$-improvement of Wilson quark action in three-flavor $Q C D$ with plaquette gauge action, Phys. Rev. D 71 (2005) 054505 hep-lat/0406028.
[29] CP-PACS AND JLQCD collaboration, S. Aoki et al., Nonperturbative $O($ a $)$ improvement of the Wilson quark action with the $R G$-improved gauge action using the Schrödinger functional method, Phys. Rev. D 73 (2006) 034501 hep-lat/0508031.
[30] T. Bhattacharya, R. Gupta, W.-J. Lee and S.R. Sharpe, Order a improved renormalization constants, Phys. Rev. D 63 (2001) 074505 hep-lat/0009038.
[31] UKQCD collaboration, S. Collins, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, A nonperturbative determination of the $O(a)$ improvement coefficient c_{A} and the scaling of F_{π} and $m^{\overline{M S}}$, Phys. Rev. D 67 (2003) 014504 hep-lat/0110159.
[32] S. Dürr and M. Della Morte, Exploring two non-perturbative definitions of c_{A}, Nucl. Phys. 129 (Proc. Suppl.) (2004) 417 hep-lat/0309169.
[33] M. Della Morte, R. Hoffmann and R. Sommer, Non-perturbative improvement of the axial current for dynamical Wilson fermions, JHEP 03 (2005) 029 hep-lat/0503003.
[34] ALPHA collaboration, M. Guagnelli et al., Non-perturbative results for the coefficients b_{m} and $b_{a}-b_{p}$ in $O(a)$ improved lattice $Q C D$, Nucl. Phys. B 595 (2001) 44 hep-lat/0009021.
[35] Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action: two-dimensional nonlinear $O(n) \sigma$-model, Nucl. Phys. B 258 (1985) 141; Univ. of Tsukuba report UTHEP-118 (1983), unpublished.
[36] M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: a renormalizable probe for nonabelian gauge theories, Nucl. Phys. B 384 (1992) 168 hep-lat/9207009.
[37] S. Sint, On the Schrödinger functional in $Q C D$, Nucl. Phys. B 421 (1994) 135 hep-lat/9312079.
[38] S. Aoki, R. Frezzotti and P. Weisz, Computation of the improvement coefficient $c_{S W}$ to 1-loop with improved gluon actions, Nucl. Phys. B 540 (1999) 501 hep-lat/9808007.
[39] R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α_{s} in $\mathrm{SU}(2)$ Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 hep-lat/9310022.
[40] Y. Taniguchi and A. Ukawa, Perturbative calculation of improvement coefficients to $O\left(g^{2} a\right)$ for bilinear quark operators in lattice QCD, Phys. Rev. D 58 (1998) 114503 hep-lat/9806015.
[41] S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216.
[42] T. Takaishi and P. de Forcrand, Odd-flavor simulations by Hybrid Monte Carlo, hep-lat/0009024.
[43] R. Frezzotti and K. Jansen, The PHMC algorithm for simulations of dynamical fermions. I: description and properties, Nucl. Phys. B 555 (1999) 395 hep-lat/9808011.
[44] A.D. Kennedy and J. Kuti, Noise without noise: a new Monte Carlo method, Phys. Rev. Lett. 54 (1985) 2473.
[45] K. Jansen and C. Liu, Implementation of Symanzik's improvement program for simulations of dynamical Wilson fermions in lattice QCD, Comput. Phys. Commun. 99 (1997) 221 hep-lat/9603008.

[^0]: ${ }^{1}$ We neglect small $O(a m)$ modifications of the gauge couplings and quark masses 22, 24, as they are not so relevant in practice 26. Here m stands for any of the quark masses.

[^1]: ${ }^{2}$ In ref. [3] r_{0} / a is extrapolated to the physical point, with the strange quark mass determined from the physical mass of the Kaon.

