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An improvement condition with a good sensitivity to cA is imposed at constant physics.

Combining our results with the perturbative expansion, cA is now known rather precisely

for a−1 &1.6 GeV.
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1. Introduction

Various discretizations of QCD on a lattice are presently used in the large scale efforts

aiming at non-perturbative results in the theory of strong interactions (see [1 – 10] and

references therein). Wilson’s original formulation [11] is theoretically very well founded [12,

13] and rather simple to implement in numerical simulations. The flavor symmetries are

exact and with modern algorithms [14 – 18] the regime of small quark masses and small

lattice spacings can be reached [1, 19]. On the other hand it is well known that since

the chiral symmetries are broken by the Wilson term, lattice artifacts linear in the lattice

spacing are present. It has long been understood how these can be removed by applying

Symanzik’s improvement programme [20 – 24]. One has to add dimension five fields to

the lattice Lagrangian and (for example) dimension four fields to the quark bilinears. In

particular the bare flavor axial current

Aa
µ(x) = ψ(x)T a γµγ5 ψ(x) (1.1)

(the SU(Nf) generator T a acts in flavor space) is improved by

(AI)
a
µ(x) = Aa

µ(x) + a cA
1

2
(∂µ + ∂∗

µ)P a(x) , P a(x) = ψ(x)T a γ5 ψ(x) , (1.2)

with

∂µ f(x) =
1

a
[f(x + aµ̂) − f(x)] , ∂∗

µ f(x) =
1

a
[f(x) − f(x − aµ̂)] . (1.3)

The coefficients of these correction terms, such as cA, can be determined non-perturbatively

by requiring specific continuum chiral Ward-Takahashi identities to be valid at finite lattice
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spacing [25]. One is then sure that the O(a) effects are entirely removed. Details of this

programme as well as the present status have recently been reviewed [26]. Here we just

mention that the coefficient csw of the Sheikholeslami-Wohlert term [21], the only dimension

five correction to the action,1 has been determined non-perturbatively for different gauge

actions and numbers of flavors [25, 27 – 29].

Next to csw, the axial current improvement coefficient cA is of particular relevance

— for example in the determination of weak leptonic decay constants such as Fπ or the

quark masses. Non-perturbative determinations of cA have been studied for Nf = 0 and

2 in refs. [25, 30 – 33]. It turned out that they need special care since the spread between

cA-values computed from different improvement conditions is significant around a ≈ 0.1 fm.

There is nothing fundamentally wrong with this fact. However, as explained in some detail

in refs. [26, 28, 33, 34], in such a situation it is important to impose improvement conditions

on a line of constant physics. This means that as the lattice spacing a is varied, all other

physical scales are kept fixed. The remaining effects (after improvement) are then smooth

O(a2) terms.

Here we apply this strategy to the theory with Nf = 3 flavors and the Iwasaki gauge

action [35], which is of immediate interest to the large scale computations of the CP-

PACS/JLQCD Collaborations [3]. All known practical methods for a computation of cA

start from the fact that in the continuum limit the (PCAC) quark mass

m =
〈φ′|12

(

∂µ + ∂∗
µ

)

(AI)
a
0|φ〉

2〈φ′|P a|φ〉
(1.4)

does not depend on the choice of the external states |φ〉 , |φ′〉. This is just a rephrasing

of the PCAC (operator) identity. On the lattice an O(a) dependence will exist in general.

It is reduced to O(a2) by improvement. Requiring m to be the same for two different

choices of |φ〉 , |φ′〉, or as we will say later “two different kinematical conditions”, allows a

determination of cA when csw is already known.

As in ref. [33], we use the Schrödinger functional defined in a Euclidean L3 × T world

to construct suitable states with a large sensitivity to cA. In the following section we define

the exact choices of kinematical conditions. The reader who is familiar with ref. [33] may

skip this section and proceed directly to the description of the simulation details, section 3,

and the results, section 4. We finish with some conclusions.

2. Improvement condition

We introduce the following Schrödinger functional [36, 37] correlation functions [32, 33]

f
(n)
A (x0) = −

a3

3

∑

x

〈Aa
0(x)Oa,(n)〉 , f

(n)
P (x0) = −

a3

3

∑

x

〈P a(x)Oa,(n)〉 and (2.1)

f
(n,m)
1 = −

1

3
〈O′ a,(n)Oa,(m)〉, (2.2)

1We neglect small O(am) modifications of the gauge couplings and quark masses [22, 24], as they are

not so relevant in practice [26]. Here m stands for any of the quark masses.
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with

Oa,(n) =
a6

L3

∑

y,z

ω(n)(y − z) ζ̄(y)T a γ5 ζ(z). (2.3)

where ζ and ζ̄ are the fermionic boundary fields on the x0 = 0 timeslice (O′ is defined in

the same way in terms of the boundary fields at x0 = T ). The correlators depend on the

smooth functions ω(n). Here, as in ref. [33], we use three wave functions

ω(n) =
1

N (n)

∑

k∈Z3

ω̄(n)(|r − kL|) (n=1, 2, 3), (2.4)

ω̄(1)(r) ∝ e−|r|/a0 , ω̄(2)(r) ∝ (|r|/r0) e−|r|/a0 , ω̄(3)(r) ∝ e−|r|/(2a0) , (2.5)

with a0 =L/6. The normalization factors N (n) are fixed by a3
∑

x(ω(n))2 =1.

By suitably combining the operators Oa,(n), the resulting correlation functions get

contributions from different states in the pseudoscalar channel. In fact we construct the

boundary operators O0 and O1, which mainly couple to the ground and first excited states

respectively, by using the eigenvectors of the 3 × 3 symmetric matrix f
(n,m)
1

Oa
0 =

∑

n

η
(n)
0 Oa,(n), Oa

1 =
∑

n

η
(n)
1 Oa,(n), (2.6)

where η0 (η1) represents the eigenvector associated with the largest (2nd largest) eigenvalue.

The corresponding correlators fX,i =
∑

n η
(n)
i f

(n)
X with i = 0, 1 and X=A,P are eventually

used to define the improvement condition, which reads

m0(x0) = m1(x0), (2.7)

where

mi(x0) = ri(x0) + cA a si(x0), (2.8)

ri(x0) =
(∂0 + ∂∗

0) fA,i(x0)

4fP,i(x0)
and si(x0) =

∂0∂
∗
0 fP,i(x0)

2 fP,i(x0)
. (2.9)

Solving eq. (2.7) for cA yields

cA(x0) = −
1

a

∆r(x0)

∆s(x0)
, ∆r(x0) = r1(x0) − r0(x0), ∆s(x0) = s1(x0) − s0(x0) . (2.10)

The sensitivity of the improvement condition to cA is given by a |∆s(x0)|. In the ideal case

of exact projection on the ground (π) and first excited (π1) states (and large T − x0) that

would be given by a (m2
π1 − m2

π). As discussed in ref. [33] however the vectors η
(n)
i do not

achieve perfect projection and the correlator fA,1(x0) for example gets some contribution

from the ground state. Anyway what is really needed is that at intermediate times x0 ≃

T/2 where we extract cA, the correlation functions are dominated by states with different

energies, such that the sensitivity is high. We will see in section 4 that in our setup this is

indeed the case.
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3. Simulation details

We work in the theory with three (dynamical) degenerate flavors of non-perturbatively

improved Wilson-fermions and the Iwasaki gauge action [21, 29, 35]. The latter reads

Sg = β

{

∑

x, µ<ν

wP
µν(x0)

1

3
ReTr[1−Pµν(x)] +

∑

x, µ, ν

wR
µν(x0)

1

3
ReTr[1−Rµν(x)]

}

, (3.1)

where β=6/g2
0 , and Pµν and Rµν are the 1× 1 and 1× 2 Wilson loops in the (µ, ν) plane.

Their weights are wP
µν =3.648 and wR

µν =−0.331 on periodic lattices.

The Schrödinger functional formalism is implemented on a L3 × T lattice with L=T .

The background field is set to zero and the fields are chosen to be periodic in space. The

weights in the gauge action are modified to the following choice [38]

wP
µν(x0) =

{

1/2 at x0 =0 or T , and µ, ν 6=4

3.648 otherwise
(3.2)

wR
µν(x0) =











0 at x0 =0 or T , and µ, ν 6=4

−0.331 × (3/2) at x0 =0 or T , and µ=4

−0.331 otherwise

(3.3)

which entails tree level O(a) improvement “at the boundaries” [22]. The coefficients of

the O(a) boundary counterterms for the fermions are also set to their tree level value [22].

Note that this is not at all essential. Irrespective of whether the boundary improvement

terms are implemented, eq. (2.7) is a correct improvement condition [22].

We simulate at three points in the (β,L/a, κ) space on a line of constant physics

defined by keeping the volume and the quark mass fixed. Scales are fixed through r0 [39]

and we will use r0 = 0.5 fm to quote physical units. For our action, the ratio r0/a has been

computed in the region 1.83 ≤ β ≤ 2.05 [3].2 With a slight interpolation of the data of

ref. [3] we fixed L/r0 ≈ 3, somewhat larger than the physical size used in ref. [33]. The

resulting pairs (β,L/a), together with some algorithmic details are collected in table 1.

The hopping parameter κ is tuned in order to give a bare quark mass mref of about

15 MeV. At β =1.83 and 1.95, two quark masses around 10 and 20 MeV are simulated so

that we can interpolate cA to mref . Notice that we are ignoring presumably small changes

of the renormalization factors in our range of β and we just keep the bare quark mass fixed.

Also, the 1-loop value of cA [38, 40] is used at this point in the definition of the quark mass.

The algorithm has been described in ref. [15]. It is a combination of HMC [41] and

PHMC [42, 43]. Non-Hermitian Chebyshev polynomials P [D] are used to approximate

the inverse square root of the Dirac operator D required for the third flavor, whereas the

other two flavors are treated using the usual HMC pseudo-fermion action. The number of

molecular dynamics steps is chosen such that the acceptance rate PPHMC is about 90%. In

order to make this algorithm exact, the correction factor

Pcorr = det [W [D]] , W [D] = P [D]D (3.4)

2In ref. [3] r0/a is extrapolated to the physical point, with the strange quark mass determined from the

physical mass of the Kaon.
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β L/a κ NMD Npoly Ntraj PPHMC PNMT

1.83 12 0.13852 90 200 3800 0.90 0.97

1.83 12 0.13867 90 220 3800 0.89 0.95

1.95 16 0.13685 125 230 3000 0.91 0.96

1.95 16 0.13697 140 260 3000 0.94 0.94

2.05 20 0.13604 130 350 3000 0.87 0.97

Table 1: Simulation parameters. We denote the number of the Molecular Dynamics steps by NMD,

the order of the polynomial approximation by Npoly and the number of unit length trajectories by

Ntraj. The acceptance rates for the PHMC updating and for the noisy Metropolis test in the PHMC

algorithm are denoted by PPHMC and PNMT respectively.

β κ η0 η1

1.83 0.13867 ( 0.5459, 0.5920, 0.5929 ) ( 0.8323, -0.3019, -0.4649 )

1.95 0.13697 ( 0.5415, 0.5942, 0.5948 ) ( 0.8367, -0.312 , -0.4500 )

2.05 0.13604 ( 0.5360, 0.5962, 0.5976 ) ( 0.8371, -0.2836, -0.4679 )

Table 2: Example of eigenvectors η0 and η1 in three-flavor QCD at each β.

is taken into account by a noisy Metropolis test [44]. The order of the polynomial approxi-

mation is chosen such that the acceptance rate of the noisy Metropolis test is around 95%.

Throughout all the computation the symmetrically even-odd preconditioned version of the

Dirac operator [15, 45] is used.

The correlators in eqs. (2.1), (2.2) are measured each 5th trajectory and residual auto-

correlations are estimated by binning the jack-knife samples. For cA(x0) the errors flatten

out for bin-sizes larger than four, which is what we finally use in our analysis.

4. Numerical results

4.1 Wave function projection

As discussed above, the analysis starts with the determination of the eigenvectors of the

correlator matrix f
(n,m)
1 (n,m = 1, 2, 3). The results at the lightest quark mass for each β

value are given in table 2. The errors on the components of the eigenvectors are less than

10−3 and 10−2 for η0 and η1, respectively.

The entries of the (normalized) eigenvectors are ratios of correlation functions for which

the Z-factors of the boundary fields cancel. They will thus have a well defined continuum

limit along a line of constant physics as long as the wave functions ω(n) are defined only

through physical length scales. Indeed, we observe only a small lattice spacing dependence

and also note that the values we obtain are close to those in ref. [33], where slightly smaller

values of a0 (∼0.2 fm) and L are used in two-flavor QCD with the plaquette gauge action.

Using the measured eigenvectors, we now construct the pseudoscalar correlators fX,0

and fX,1 (X = P,A). Figure 1 shows the effective masses in units of the box size for the

projected correlators fP,i at β = 1.83 and 1.95. Clearly, the correlators are dominated
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β = 1.95,  κ = 0.13697

Figure 1: Effective mass mP,eff = 1
2a

log(fP,i(x0−a)/fP,i(x0+a)) for fP,0 and fP,1 rescaled by L.

The dotted line shows where the effective mass is equal to a−1.

β κ a∆r a2 ∆s L2 ∆s

1.83 0.13867 0.0229(14) 0.429(22) 62(3)

1.95 0.13697 0.0072( 7) 0.236(14) 60(4)

2.05 0.13604 0.0036( 3) 0.133( 6) 53(2)

Table 3: Examples of ∆r and ∆s at x0 =T/2.

by different states and the effective masses are well separated even for large times. The

data at the two coarser lattice spacings are obtained at physical quark masses similar to

each other and we observe good agreement also for the effective masses in the pseudoscalar

channel (mP,0 L≈ 3 and mP,1 L≈ 11). In table 3 we have included also the combination

L2 ∆s, which has a continuum limit when all quantities are computed on a line of constant

physics. While an a-dependence appears to be present in this combination, this is small.

We can take its smallness as good evidence that our improvement condition does not suffer

from large O(a2) contributions.

Note, however, that the effective mass mP,1 at our smallest β is already close to the

cutoff (i.e. mP,1 L ∼ L/a in figure 1). This implies that a rapid increase of the residual

O(a2) effects might occur if one were to evaluate the improvement condition at even coarser

lattice spacings.

4.2 The improvement coefficient

With the projected correlation functions we can proceed to the extraction of cA itself.

Table 3 lists the differences ∆r and ∆s for the lightest quark mass at each β. In all cases

we see a good signal for ∆s and thus have a large sensitivity to cA.

In figure 2, we plot the effective cA(x0), cf. eq. (2.10), from the finest and coarsest

lattices. The value of cA(x0) stabilizes after only a few lattice spacings from the lower

temporal boundary where higher exited states contribute. In all cases x0 = T/2 is already in

the region, where these effects are small and we use this choice to complete the definition of
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κ = 0.13852
κ = 0.13867

β=1.83
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0
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c A

κ = 0.13604

β=2.05

Figure 2: Effective value of cA as a function of x0 at β = 1.83 (left panel) and β = 2.05 (right

panel). The data at β =1.83 and κ=0.13867 are slightly shifted along the vertical axis for clarity.

β κ am cA

2.05 0.13604 0.00554(14) -0.0272(18)

1.95 0.13685 0.01020(29) -0.0348(25)

[interp.] amref -0.0319(18)

0.13697 0.00508(28) -0.0303(24)

1.83 0.13852 0.01406(54) -0.0519(23)

[interp.] amref -0.0528(17)

0.13867 0.00614(63) -0.0534(24)

Table 4: Numerical results for am and cA. Also shown are the results of the interpolation to mref

at the two coarser lattice spacings.

cA. Results for the improvement coefficient and the PCAC quark mass from all simulations

are collected in table 4.

4.3 Interpolation of cA

As discussed above, we aim at evaluating the improvement condition on a line of constant

physics in order to avoid potentially large O(a) ambiguities in cA itself. To this end we

interpolate the results for cA at β = 1.83 and 1.95 to a quark mass mref that is matched

to the one measured on the finest lattice. The quark mass dependence seems to be very

small and thus the uncertainties in the quark masses become unimportant and we obtain

cA at mref with a small statistical error.

For future use we summarize the present results for the improvement coefficient in

an interpolating formula (4.1), which by construction reduces to the one-loop result from

refs. [38, 40] in the perturbative limit

cA(g2
0) = −0.0038 g2

0 ×
1 − 0.195 g2

0

1 − 0.279 g2
0

. (4.1)
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c A

Figure 3: Non-perturbative estimate of cA as a function of g2
0 .

It is plotted in figure 3, where one can verify that this formula reproduces the data well

and gives a smooth interpolation in the range of β values we simulated. As was the case

with the plaquette gauge action and two quark flavors [33], the non-perturbative result is

quite different from the one-loop estimate for practically relevant lattice spacings.

4.4 Systematic uncertainties

The computation of cA on a line of constant physics reduces the intrinsic ambiguity on the

improvement coefficient to a smooth O(a) form. Deviations from this condition will lead

to systematic effects and we should therefore check the consequences of variations of the

physical volume and quark mass for our improvement condition.

All simulations, on which we report here, are performed at fixed physical volume and

we thus have no direct check of the volume effects on cA from this improvement condition.

From [33] we know that those can be large, but we know that our condition guarantees that

they disappear smoothly as we approach the continuum limit, especially since our volume

scaling is based on actual measurements of r0/a.

From the data at the two coarser lattice spacings in table 4 it is evident that the quark

mass dependence of cA is very weak in our setup. This implies that no fine tuning of

m is required and also a posteriori justifies the fact that we ignore small changes of the

renormalization factor in our range of β and use the bare quark mass in our definition of

a line of constant physics.

As mentioned above, the energy of the first excited state at our lowest β = 1.83 is

close to a−1. Consequently, enforcing the present improvement condition at β .1.83 may

induce large O(a2) scaling violations in the axial current. While larger volumes might help

in lowering this energy, the observation shows that even with improved gauge actions, one

should not push the simulations too much towards coarse lattice spacings. On the other

hand it is useful to repeat our earlier observation: within the range of lattice spacings

covered here, we see a reasonable scaling of L2 ∆s; this is a good hint that the considered
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matrix elements do not suffer from large a-effects. In retrospect the same statement can

be made about the Nf = 2 computation with plaquette gauge action [33].

5. Conclusions

We have computed the O(a)-improvement coefficient cA(g0) of the axial current non-

perturbatively in three-flavor QCD with the Iwasaki gauge action and non-perturbative

csw(g0) [29]. The improvement coefficient cA is parametrized as a function of g0. Since the

results connect smoothly to the one-loop formula at weak coupling, a simple interpolation

formula (4.1) could be given in the range of a−1 > 1.6 GeV.

We note that at the largest lattice spacing covered, the correction term amounts to

10 – 15% in decay constants Fπ, FK and then also in the renormalized quark masses eval-

uated from the PCAC relation. As a next step, a full non-perturbative evaluation of these

quantities now requires the computation of the renormalization factor ZA and for inter-

esting applications of vector form factors also the corresponding quantities ZV and cV are

very relevant. On the other hand, improvement terms proportional to the light quark

masses are suppressed by the smallness of am. It then appears sufficient to approximate

the associated coefficient by one-loop perturbation theory [38, 40].
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